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A saturated porous medium confined between two horizontal cylinders is considered. 
As a result of a temperature difference between the cylinders, thermal convection is 
induced in the medium. The flow structure is investigated in a parameter space 
(R,Ra) where R is the radii ratio and Ra is the Darcy-Rayleigh number. In  
particular, the cases of R = 2, 2;, 2; and 2i are considered. The fluid motion is 
described by the two-dimensional Darcy-Oberbeck-Boussinesq’s (DOB) equations, 
which we solve using regular perturbation expansion. Terms up to O(Ra60) are 
calculated to obtain a series presentation for the Nusselt number N u  in the form 

Nu(Ra2) = C N ,  RaZs. 

This series has a limited range of utility due to singularities of the function 
Nu(Ra2).  The singularities lie both on and off the real axis in the complex Ra2 plane. 
For R = 2, the nearest singularity lies off the real axis, has no physical significance, 
and unnecessarily limits the range of utility of the aforementioned series. For 
R = 2;, 23 and 2;, the singularity nearest to the origin is real and indicates that the 
function Nu(Ra2) is no longer unique beyond the singular point. 

Depending on the radii ratio, the loss of uniqueness may occur as a result of either 
(perfect) bifurcations or the appearance of isolated solutions (imperfect bifurcations). 
The structure of the multiple solutions is investigated by solving the DOB equations 
numerically. The nonlinear partial differential equations are converted into a 
truncated set of ordinary differential equations via projection. The steady-state 
problem is solved using Newton’s technique. At each step the determinant of the 
Jacobian is evaluated. Bifurcation points are identified with singularities of the 
Jacobian. Linear stability analysis is used to determine the stability of various 
solution branches. The results we obtained from solving the DOB equations using 
perturbation expansion are compared with those we obtained from solving the 
nonlinear partial differential equations numerically and are found to agree well. 

30 
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1. Introduction 
Natural convection in porous media is germane to many technologies involving 

thermal insulators such as steam distribution lines, gas lines in gas-cooled nuclear 
reactors, cryogenics and storage of thermal energy. Thermal insulators typically 

t All correspondence should be directed to this author. 
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consist of a fibrous material, which is permeable to fluid motion and thus subject to 
natural convection. As Caltagirone (1976), Burns & Tien (1979), Brailovskaya, 
Petrazhitskii & Polezhaev (1978), and others have demonstrated, this natural 
convection may contribute significantly to the heat transfer process. 

In this paper, we focus on the two-dimensional convective motion in a horizontal, 
concentric annulus containing a saturated porous medium, It turns out that two- 
dimensional flows are physically realizable for low Darcy-Rayleigh numbers, small 
radii-ratio annuli, and annuli with small axial lengths. 

A similar configuration has been studied both experimentally and theoretically by 
Caltagirone (1976). He carried out experiments involving an annulus of radii ratio 
R = 2 .  His theoretical work covers the parameter range 2; < R < 16. Caltagirone 
(1976) has observed that for relatively low Rayleigh numbers Ra, the flow is two- 
dimensional and steady, consisting of two counter-rotating cells, one in each half of 
the annulus. As the Rayleigh number increases beyond some critical value Ra,, the 
flow undergoes a Hopf bifurcation into a three-dimensional, oscillatory motion. 
Caltagirone ( 1976) concluded that multicellular, two-dimensional structures do not 
exist. In  a later, numerical study, Rao, Fukuda & Hasegawa (1986) demonstrated 
the existence of a multicellular flow structure in an annulus of radii ratio R = 2 ,  
which they claim (mistakenly, as we shall show later) bifurcates from the bicellular 
convective structure a t  some Ru = Ra,. Thus, there seems to be some confusion over 
what happens as the Rayleigh number is increased. In  this paper, we systematically 
investigate the structure of the flow in parameter space (R,  Ra) ,  2i < R < 2 .  

It is hoped that this study also will contribute to our understanding of thermal 
convection of Newtonian fluids in a concentric annulus. 

We employ two different theoretical tools. The first one consists of constructuring 
an approximate solution to the governing equations using a power series expansion 
in terms of the Rayleigh number Ra. Terms up to O(Ra60) are computed. The radius 
of convergence of the series is limited owing to singularities located in the complex 
Ra plane. 

The singularities lie on and off the real axis. The singularities off the real axis have 
no physical significance. The singularities which lie on the real axis and are denoted 
Ra, correspond to the region Ra < Ra,, in which the function Nu(Ra2) is unique and 
the solution of the Darcy-Oberbeck-Boussinesq (DOB) equations is also likely to be 
unique. For Ra > Ra,, multiple solutions exist. 

The mechanism through which the solution loses uniqueness is investigated by 
solving the nonlinear partial differential equations (p.d.e.’s) directly. To this end, we 
employ Galerkin’s technique to convert the p.d.e.’s into ordinary differential 
equations (o.d.e.’s). The steady-state problem consists of a truncated set of nonlinear 
algebraic equations. 

A solution branch for the algebraic system is generated by starting from a known 
solution (i.e. the conduction solution) and continuing the solution for higher values 
of the Rayleigh number using Newton’s technique. The procedure is successful as 
long as the system’s Jacobian is not singular. Bifurcation points correspond to the 
values of the Rayleigh number for which the Jacobian becomes singular. It turns out 
that for radii ratios R of less than d, the appearance of multiple solutions occurs as 
a result of a (perfect) bifurcation, while for R 2 21 the appearance of multiple 
solutions occurs as a result of the existence of additional isolated solutions (i.e. 
imperfect bifurcation). The results obtained from the power series expansion and the 
numerical solution of the nonlinear p.d.e.’s are compared and found to agree well. 

Two-dimensional bifurcation phenomena, of course, are not the only type that 
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FIGURE 1 .  The geometric configuration. 

occur in thermal convection in horizontal annuli. For example, Caltagirone (1976) 
observed transition from two-dimensional flow into three-dimensional oscillatory 
flow. Thus, in order to determine the range of validity of the two-dimensional model, 
it is important to establish whether two- or three-dimensional bifurcations are the 
first to occur. We do so by comparing our own results with Caltagirone’s (1976) and 
conclude that for small radii ratios and for narrow annuli, two-dimensional 
bifurcations are likely to precede the three-dimensional ones. Thus, the results of this 
study are applicable only to small radii ratios and/or narrow gaps. 

2. Mathematical model 
A concentric, horizontal annulus of axial length L is filled with a saturated porous 

medium (figure 1 ) .  The inner and outer cylinders of radii ri and ro are maintained a t  
constant uniform temperatures c and Po, respectively. As a result of the temperature 
difference, A5! = c-P0,  buoyancy-driven flow is induced in the medium. In this 
paper, we focus on two-dimensional flows. Such flows are likely to exist for either 
small temperature differences AF,  small aspect ratios A = L/ri or small radii ratios 
R = ro/r i .  The fluid motion is governed by the two-dimensional Darcy-- 
Oberbcck-Boussinesq (DOB) equations which are expressed below in dimensionless 
form using a cylindrical coordinate system ( r ,  0) : 

with the boundary conditions 

$ = O ,  T = l  a t r = 1 ,  O<0<7c,  

+ = T = O  at  r = R, O < 0 < 7 c ,  

- _  - $ = O  a t l < r < R ,  0=0,7c  
a0 
aT 
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As the boundary conditions indicate, we restrict ourselves to symmetric solutions 
with respect to the vertical axis (0 = 0, x). 

Usually in this paper we shall concern ourselves with the steady-state version of 
(2.1) in which the time-dependent term is absent. Nevertheless, we write the DOB 
equations (2.1) in the more general transient form in order to facilitate the linear 
stability analysis described in 94.3. I n  this context, the steady-state solutions will 
servc as initial data for the time-dependent equations. In  the above equations, + 
represents the stream function and T is the temperature. Ra = K/3gri ATlva,, is the 
Darcy-Rayleigh number ; where /3 is the thermal expansion coefficient ; K is the 
medium’s permeability ; g is the gravitational acceleration ; v is the kinematic 
viscosity of the saturating fluid; aeQ is the equivalent thermal diffusivity of the 
medium ; and t is time. All quantities are non-dimensional. The lengthscale is the 
radius of the inner cylinder ri, the temperature scale is A@, the velocity scale is 
aeq/ri and the timescale is ur:/af. a, is the fluid’s thermal diffusivity; u is the ratio 
between the thermal capacity of the fluid and the equivalent thermal capacity of the 
saturated medium. 

For the subsequent derivation, we find it convenient to map the annular domain 
(ri < r d To,  0 d d < x) onto the rectangle (0 < x < log R, 0 < y < x). To the end, we 
employ the conformal transformation x + iy = log r + id. The resulting equations 
are 

with the boundary conditions 

+ = O ,  T = l  a t x = 0 ,  o < y < x ,  

+ = T = O  a t  x = log R, o < y < . n ,  

and 

The heat flow rate is presented in terms of the Nusselt number, 

(2.2a) 

(2.2 b )  

which corresponds to the ratio of the total heat transfer to the heat transfer in the 
absence of convection. 

We proceed by seeking steady-state solutions for (2.2) and then analysing the 
stability of these solutions. The steady-state equations are obtained by omitting the 
time derivatives from (2.2). 

3. An extended perturbation expansion 
The governing equations (2.2) are a set of coupled nonlinear, partial differential 

equations for which an exact solution is not known. In  this section, we construct an 
approximate, steady-state solution using a regular perturbation expansion. 
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3.1. The expansion 

We consider the dependent variables ($, T )  to be functions of both the coordinates 
( x ,  y) and the Rayleigh number Ra. The expansion of $ and T into truncated Taylor 
series in terms of Ra yields: 

S 

and 

( 3 . l a )  

(3 . lb )  

( 3 . 1 ~ )  

The dependence of the Nusselt number on Ra2 rather than on Ra itself follows from 
the expected invariance of the Nusselt number t,o a change of sign of Ra.  This 
conjecture is, of course, verified later on by the analysis. 

By introducing the above expansions into the nonlinear p.d.e.’s (2.2) and by 
equating coefficients of like powers in Ra,  we obtain a set of linear p.d.e.’s: 

where 

V2Ts = e, C ‘s-k) 
’-’ 
k=l 

’ 

0 for s = 0 
1 otherwise, 

and the boundary conditions are 

T, = (1-e,), $s = 0 a t  x = 0, o < y < 7 c ,  

T, = $s = 0 o < y < 7 c ,  at  x = log R, 

and at  0 < x < logR, y = 0 , ~ .  

The zeroth-order solution corresponds to the no-motion state 
X 

$ o = O ,  To=l- -  N o  = 1. 
log R’ 

(3.2a) 

(3.2b) 

(3.3) 

In principle, one could solve (3.2) analytically to any desired order. For example, 
Caltagirone (1976) calculated terms up to O(Ra2) and O(Ra3),  respectively, in the 
temperature and stream-function expansions. However, the amount of labour and 
the length of the expressions involved tend to increase exponentially as the order of 
approximation s increases. At the present time, it appears that the analytical 
evaluation of higher-order terms may not be feasible even if computer algebra (i.e. 
MACSYMA) were to be employed. Thus, we resort to a numerical approach and use a 
Galerkin method to integrate the Poisson equations (3.2). The dependent variables 
($,, T,) are expressed using the truncated spectral presentations : 

(3.4) 
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By requiring (3.4) to satisfy (3.2) in the sense of weighted residuals, we obtain 
recurrence relationships for the coefficients A,,  m ,  and B,, m ,  n .  The corresponding 
expressions are given in Appendix A. 

Caltagirone’s (1976) work suggests a certain symmetry in this problem, which is 
reflected in the coefficients A,, m ,  and B,, m ,  n .  One can show (by induction) that each 
of the functions T, and $, is even (odd) in y if s is an even (odd) integer. This implies 
that non-zero values of As,  m ,  and Bs,m,n occur only when n < s and s and n are 
either both odd or both even. The aforementioned fact was exploited in determining 
the coefficients A,, m ,  and Bs,m,n numerically, and it is consistent with the 
assumption that the Nusselt number is a function of Ra2 as expressed by ( 3 . 1 ~ ) .  

K .  Himaselchar and H .  H .  Bau 

The coefficients N ,  in the Nusselt-number expansion ( 3 . 1 ~ )  can be expressed as 

A double-precision Fortran program was written to evaluate the coefficients A,,m, 
and B,,m,n for various choices of the radii ratio R and the truncation levels ( M ,  N 
and X). The effect of the machine’s finite precision on the results (round-off error) was 
tested by running the program with 18- and 27-digits precision. The results in each 
case were essentially the same. Similarly, the impact of the level of truncation was 
examined by running the program for a number of choices of M and N .  M and N were 
assumed to be sufficiently large when further increases in their values did not alter 
the first four significant digits of N,. For a more detailed discussion of the effect of 
round-off error and truncation see Appendix B. 

Of prime interest to our subsequent discussion is the Nusselt number Nu which 
can be expressed as 

;.S 

NU - X NsRaZS .  (3.6) 
,=O 

The computed coefficients N ,  are given in table 1 for X = 60 and radii ratios of 
R = 2, 2;, 2; and 2i. 

Series such as (3.6) often have a limited radius of convergence Ra,. We attempt to 
estimate this radius of convergence in the next subsections. For Ra < Ra,, the series 
(3.1) may be used to calculate the flow and temperature fields and the Nusselt 
number. The corresponding flow (stream-function) and temperature (isotherms) 
fields are depicted in Figures 11 ( a )  and 13 (a) for R = 2; and 2$, respectively. The flow 
field (left-hand sides of the figures) corresponds to bicellular convection, that is one 
convective cell in each half of the annulus. Warm fluid is rising next to the hot, inner 
cylinder and descending next to the cold, outer one. The temperature field depicted 
in the right-hand sides of the figures resembles the conductive regime. The isotherms 
are almost concentric which suggests that convective effects are relatively weak. 

3.2. The range of utility of the series 
We start the investigation of the radius of convergence of the series (3.5) by 
employing the Cauchy root and the ratio tests (Fulks 1961 ; Lang 1985). These two 
tests are quite universal and do not require any a priori assumptions about the 
analytic structure of the function Nu(Ra2) .  
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s 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

(32,321 
+ 1.00003 + 000 
+ 1.72763 - 004 
- 1.67473 - 008 
+7.56063-013 
+2.92473-016 
-1.43783-019 
+ 2.07683 - 023 
+4.78953 -027 
+ 1.97693-030 
- 1.20093 - 033 
-8.79743-037 
+3.72813-040 
+ 1.25223 - 043 
-7.94843-047 
+ 1.09423 -050 
+ 5.20793 - 054 
- 9.7 1373 - 057 
+ 3.8873E -060 
+ 1.42103-063 
- 1.28573 - 066 
+ 1.61843-070 
+6.8192E -074 
-4.57683-077 
+3.14773-080 
- 5.91283 - 084 
-3.98193 -087 
+8.90163-091 
- 5.74483 - 096 
+ 4.90923 - 097 
- 1.50033 - 100 
- 9.08633 - 104 

Rae 47 

2: 
( 3 ~ 3 1 )  

+ 1.00003 + 000 
+8.34403-006 
-5.70593 -01 1 
+4.72053 -016 
-3.07503 -021 
+2.88903-027 
+ 6.57213 -031 
-3.68323-038 
+ 8.77 193 - 040 
+ 4.68823 - 044 
+3.77263-048 
+2.86703-052 
+2.15743-056 
+1.63213-060 
+ 1.22083 - 064 
+9.13473-069 
+6.78633-073 
+5.03613-077 
+ 3.7 1843 - 081 
+ 2.74123 - 085 
+ 2.01293 - 089 
+ 1.47583 - 093 
+ 1.07843 - 097 
+7.8691E-102 
+ 5.72553 - 106 
+4.1603E-110 
+ 3.01523 - 114 
+2.18273 - 118 
+ 1.57633 - 122 
+1.13723--126 
+8.18513- 131 

120 

2; 

(31,311 

+ 1.00003 + 000 
+ 4.48673 - 007 
-1.83293-013 
+ 1.03953-019 
-6.35433-026 
+3.77463-032 
-1.89463-088 
+5.90873-045 
+ 7.05943 - 05 1 
+ 2.47733 - 056 
+ 2.06903 - 061 
+ 2.7 152E - 066 
+ 2.86653 - 07 1 
+ 4.00723 - 076 
+ 5.67603 -081 
+8.90183-086 
f1.46123-090 
+ 2.52533 - 095 
+ 4.51843 - 100 
+ 8.33043 - 105 
+ 1.57043 - 109 
+ 3.01333 - 114 
f5.85943- 119 
+ 1.15103- 123 
+ 2.27833 - 128 
+4.53473 - 133 
+ 9.06273 - 138 
+ 1.81643- 142 
+ 3.64783 - 147 
+ 7.33523 - 152 
+ 1.47623- 156 

220 

2: 

~ 3 2 )  

+ 1.00003 + 000 
+ 2.58623 - 008 
- 6.257 1 3  - 016 
+ 2.17953 -023 
-8.64743-031 
+3.63543-038 
- 1.56083 - 045 
+6.73543-053 
-3.07603-060 
+2.21603-067 
-4.05513-074 
+ 1.40483 - 080 
-5.1 1893 -087 
+2.70663-093 
- 1.04143 - 099 
+ 9.91583 - 106 
- 1.44293 - 112 
+8.17173 - 118 
+5.29313-124 
+ 1.66543 - 129 
+2.71023- 135 
+ 6.60263 - 141 
+ 1.50743 - 146 
+ 3.94343 - 152 
+ 1.07253 - 157 
+3.13513-163 
+9.63163- 169 
+ 3.11623 - 174 
+ 1.05363 - 179 
+ 3.7 1 143 - 185 
+ 1.35613 - 190 

472 
 TABLE‘^. The coefficients N ,  in the original series Nu = &, N ,  Ra2”. The numbers ( M ,  N )  indicate 

the level of truncation (3.4). 

The Gauchy root test 

be determined from the limit process 
According to the Cauchy root test, the radius of convergence Ra, of the series can 

Ra, = lim INsl-l”-?s. (3 .7)  
,-to0 

Hence, in figure 2, we depict IN,l-Bs as a function of s for radii ratios R = 2,  2+, 2; and 
2;. Clearly, as s increases, IN,I-ts approaches asymptotically a finite limit. The 
asymptotic value, denoted by a dashed line in figure 2, was obtained using other 
means (to be described later). The Cauchy root test establishes that the series does 
indeed have a limited radius of convergence. Unfortunately, the convergence to the 
asymptotic value is slow. On the other hand, the test has the advantage of being 
relatively insensitive to oscillatory behaviour of the coefficients N ,  in the series 
(3.6). 
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FIGURE 2 .  Cauchy root test. ( a )  R = 2 ,  ( b )  2;, ( c )  2; and ( d )  2:. 

The ratio test 

In contrast to the Cauchy test, the ratio test converges quite quickly. 
Unfortunately, though, it is sensitive to oscillatory behaviour by the series' 
coefficients. To determine the radius of convergence Ra,  of the series (3.6) using this 
test, one can conveniently employ Domb & Sykes' (1957) simple graphical approach 
(see also Gaunt & Guttmann 1974). To this end, we plot in figure 3 the ratio 
lNs/Ns-ll as a function of s-'. Ra,  is estimated as the limiting value 

Ns-1 

For the radii ratio R = 2 ,  the Domb-Sykes plot is too oscillatory to yield any useful 
results. In this particular case, the Cauchy root test clearly has an advantage over the 
ratio test (compare figures 3 a  and 2a) .  In  the other cases considered (i.e. R = 2$, 
2f and 2;) the curves eventually demonstrate an almost linear relationship with SK'. 
We extrapolate the data to s+co by fitting polynomials of various orders of s-l into 
the graph of the ratio ( N s / N s P l )  us. s-'. We then use the resulting formula to estimate 
the value of Ra,. This is accomplished by constructing a Neville table (Gaunt 
& Guttmann 1974; see also Appendix C for details). For R = 2; and 2f, the Neville 
table predicts Ra,  = 1 2 0 f 3  and 220+5. For R = 2;, linear extrapolation predicts 
Ra,  = 366 while quadratic extrapolation leads to erratic behaviour which precludes 
one from reaching a definitive conclusion. Apparently, in this case, we need a larger 
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FIGURE 3. Domb-Sykes plots for the original series (3.6). (a )  R = 2 ,  ( b )  2:, (c) 2i and (d )  2;. 

number of terms in the series (3.6) than we currently have. We did not procure these 
additional terms owing to budget constraints. Alternatively, we estimated Ra, using 
the Pad6 method which we describe later ($3.3). 

The Darboux Theorem 

To obtain additional estimates of the radius of convergence of the series (3.6) and 
the nature of the nearest singularity, it  is necessary to hypothesize about the analytic 
structure of the function Nu(Ra2).  To this end, we use the Darboux theorem (Henrici 
1977; Hunter & Guerrier 1980). Briefly, the Darboux theorem states that if the 
singularity of the function Nu(z)  (2 E Ra2) that is closest to the origin is located a t  
the real point z = z1 and the behaviour of Nu(z)  in its neighbourhood is given by 

(3.9) 

where 
W 

r (z)  = C rk(z-z1)IC 
k-0 

and r ( z )  and h(z) are analytic in a circle with a centre a t  z = 0 and a radius p > Jxll, 
then the asymptotic expansion for N ,  for large s will be 

(3.10) 
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When s is sufficiently large, the first term in the series (3.10) is predominant, so 
that 

To the first approximation, we have 
---[,.S+o(;)] N ,  1 v - 1  

N*-l 21 
(3.11) 

This immediately suggests that all (N, )  will ultimately have the same sign if z1 is 
positive. This is the case for the expansions for radii ratios R = 2+, 23 and 2:. 

If Nu(z )  were of the Darboux form, (3.9), the Domb-Sykes curves (figure 3) also 
might provide an estimate for the power v in (3.9). Such an estimate could be 
obtained by having the straight lines in figure 3 intercept the s-l axis a t  s-l = 
( 1  -v ) - l .  Accordingly, we predict v - 2.3, 1 and - 14.4 for R = 24, 23 and 23, 
respectively. Positive values of v, however, must be rejected on physical grounds 
since they imply Nu+ co as Ru + Ra,, (3.9). In  fact, the results of $4 suggest that 
Ra, is a branch point with v < 0. We cannot explain with certainty why (3.11) fails 
to predict the correct value of the exponent v. One plausible explanation is that the 
existence of non-physical singularities located close to or on the perimeter of the disc 
of regularity leads to wrong estimates of the exponent v (Gaunt & Guttmann 1974, 
p. 188). To give credence to this speculation, we study in Appendix D a simple model 
function through which we demonstrate that the analysis of a truncated Taylor 
series may lead to an erroneous prediction of the exponent v even though i t  allows 
one to estimate the location of the nearest singular point with good precision. In  all 
the cases studied in this paper, it appears that the complex Ru2 plane is populated 
with complex singularities (93.3 and figure 4). Some of the complex singularities are 
located fairly close to the disc of analyticity. Thus, it is possible that the 
aforementioned non-physical singularities lead to erroneous estimates of the 
exponent v. Another possibility is that the function Nu(Ra2) is not of the Darboux 
form (3.9). 

3.3. The singulurities of Nu(Ra2) 
The limited radius of convergence of series like (3.6) is often due to the presence of 
a pole or a branch point located in the complex Ra2 plane. Some indication of the 
location of such a singularity can be obtained by examining the sign pattern of the 
coefficients N ,  in the series (3.6) (Van Dyke 1974, 1975). I n  the case of the radii ratio 
R = 2, the sign pattern (table 1 )  is quite complicated. This suggests that the nearest 
singularity is off the real axis. On the other hand, in the cases of radii ratios R = 2$, 
2% and 23, the coefficients eventually maintain a consistent positive sign, thus 
indicating that the nearest singularity is on the positive real axis. We note that the 
consistent positive sign pattern was established only for higher-order coefficients ; 
initially the sign alternated. This initial sign alternation apparently is attributable 
to the existence of further singularities, some of which are located off the real 
axis. 

An estimate of the location of the singularities of the function Nu(Ru2) can be 
obtained by using Pad6 approximants (Baker 1965; Gaunt & Guttmann 1974). The 
term, ‘Pad6 approximants ’, refers to the representation of functions like Nu(Ru2) as 
ratios of two polynomials, i.e. L 

(3.12) 

i=l  
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FIGURE 4. The locatkn of ,the neares: singularities as predicted by the Pad6 approximation. (a)  
R = 2 ,  (b) 2*, (c) 2 3  and (d )  2s. The dashed circle denotes the disc of analyticity. 

where the coefficients p ,  and pi can be uniquely determined in a straightforward 
fashion from the series expansion for Nu(Ra2)  (Baker 1965). We note in passing that 
the Pad6 approximants can be used as an empirical means of analytically continuing 
series like (3.5) beyond the nearest singularity (Bau 1984). Here, we are merely 
interested in estimating the location of the singularities of the series (3.6). 
Information about the location of the singularities can be obtained by finding the 
poles and the zeros of the Pad6 approximants (3.12). Pad6 approximants are known 
(Gaunt & Guttmann 1974) to reproduce poles exactly and to simulate branch cuts by 
distributing poles and zeros along the cut. Usually, it is advantageous to consider the 
Pad6 approximants to the, logarithmic derivative [d/d(Ra2)] [log h’u(Ra2)] rather 
than to the function Nu(Ra2)  itself since, in some cases, this transformation converts 
branch points into simple poles. 

We calculated the poles and zeros of the Pad6 approximants [13/13], [14/14], 
[14/15] and [15/14] to the logarithmic derivatives. Poles that did not appear 
repetitively in all four approximations were assumed to be spurious and therefore 
were discounted. We depict the location of the poles nearest to the origin and the 
nearby zeros in the complex Ra2 plane in figure 4. The poles and the zeros of the Pad6 
approximants are denoted, respectively, by plus marks and circles. The dashed circle 
in figure 4 denotes the disc of analyticity. 

For radii ratio R = 2 (figure 4a), the poles and zeros of the Pad6 approximants are 
off the real axis. It appears that the poles and zeros are distributed along a curve in 
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such a way that they simulate a branch cut. The Pad6 method suggests that the 
nearest singularity is off the real axis which is in line with the complicated sign 
pattern of the series’ coefficients (table 1)  and with the erratic behaviour of the 
Domb-Sykes’ plot (figure 3 a).  The distance between the nearest singularity and the 
origin is estimated to be Ra, = 47 f 2. This value has been used for the asymptote in 
figure 2 (a) .  Since, in this case, the nearest singularity is off the real axis, it does not 
have any physical significance and thus is of little interest to  us. Later, we shall see 
that, in addition to  the complex singularity, the function Nu(Ra2)  possesses a real 
singularity Ra, - 62 > Ra, such that for Ra > Ru,, physically realizable multiple 
solutions do exist. (We adopt the convention that Ra, and Ra, denote the distance 
to  the nearest and the nearest real singularities, respectively.) 

The Pad6 approximants fail to  predict the existence of the real singularity a t  
Ra, - 62. For radii ratios R = 2:, 23 and 2$, the nearest singularity lies on the positive 
real axis (Ra, = Ra,) (figure 4b-d). In  all these cases, we observe a number of poles 
distributed along the real axis with zeros located almost a t  the pole locations. We 
hypothesize again that the zeros and poles of thc Pad6 approximant are simulating 
a branch cut. For R = 2; and 2f, the distances between the nearest pole and and the 
origin are 119 and 223, respectively, and they are in very good agreement with the 
values predicted by the Domb-Sykes method (denoted by ‘DS’ in figure 4).  For 
R = 2+, the Pad6 method predicts Ra, = 472 f 5 while the results of the Domb-Sykes 
test are not conclusive. We observe that for R < 2:, the nearest singularity is real and 
therefore physically meaningful. We also note that in all the cases considered, there 
are additional singularities located off the real axis (not shown in figure 4 c  and d ) ,  
which apparently are responsible for the sign alternations in the lower-order terms 
of the series (3.6) (see table 1) .  As higher-order terms in the series are computed (table 
l) ,  the nearest real singularity becomes dominating, a fact which is well reflected in 
the sign pattern of the series (table 1 ) .  

3.4. Generalized Euler transformations 
Next, we shall attempt to diminish the effects of the non-real singularities by 
mapping them away. Our objective is to amplify the influence of the real singularities 
so as to improve the estimates provided by the Domb-Sykes’ technique. To this end, 
we use the generalized Euler tranformation 

U =  
[(z-2,) (z-z,*)]i’ 

(3.13) 

where the complex-conjugate pair ( zc ,  z,*) represents the singularity we wish to map 
away. Here, z = Ru2. The task at hand is to recast the series 

in terms of u, i.e. 

gS 

Nu = C N s z s  

$S 

Nu= C b,uS. 

s-0 

8-0 

(3.14) 

This objective is conveniently accomplished by first expanding (3.13) into the 
series 6)”” (3.15) 

m 

u = c P, (cos x) 
n-o 
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s 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2, 

(32,32) 

+ 1.00003 + 000 
+ 3.76593 -001 
+5.00113-002 
+ 1.63663 - 001 
+ 4.58543 - 002 
+ 1 .O655E - 001 
+ 3.92803 - 002 
+7.54733-002 
+ 3.37203 -002 
+5.8831E -002 
+ 3.36653 - 002 
+ 5.30903 - 002 
+3.74083-002 
+ 5.04503 - 002 
+ 3.7 121 3 - 002 
+ 4.22603 -002 
f2.86383 -002 
+ 2.961 9 3  - 002 
+ 2.01353 - 002 
+ 2.47643 -002 
+ 2.42533 -002 
+ 3.43673 - 002 
+ 3.76383 -002 
+ 4.32523 - 002 
+ 3.73893 - 002 
+ 2.88993 -002 
+ 1.23133-002 
-1.51213-0006 
- 7,01583 -003 
+ 1.10033 -003 
+ 2.07583 - 002 

- 750 + 2046i 

2; 
(31,31) 

+ 1.00003 + 000 
+ 490953 - 001 
+ 2.58593 - 001 
+ 1.86473-001 
+ 1.48733 - 001 
+ 1.30023 - 00 1 
+ 1.29543 - 001 
+ 1.86553 -001 
+ 5.05273 - 001 
+ 2.1573E+ 000 
+ 1.08453 + 001 
+ 5.72443 + 001 
+3.06873+002 
+ 1.65243 + 003 
+ 8.89893 + 003 
+4.78433+004 
+ 2.56593 + 005 
+ 1.37253+006 
+ 7.32233 + 006 
+ 3.89663 + 007 
+ 2.06873 +008 
+ 1.09583 + 009 
+ 5.79243 + 009 
+3.05603 +010 
+ 1.6093E+011 
+ 8.46003 + 01 1 
+4.44013+012 
+ 2.32673 +013 
+ 1.21743+014 
+6.36123+014 
+ 3.31933 +015 

-54666+21765i 

2; 
(31,31) 

+ 1.00003 + 000 
+ 4.29393 - 00 1 
+ 2.5000E - 001 
+ 1.82403-001 
+ 1.44733 - 001 
+ 1.20833-001 
+ 1.04413-001 
+ 9.37473 -002 
+ 9.15613 - 002 
+ 1.34683 - 00 1 
+ 5.19543 - 001 
+ 4.30923 + 000 
+ 4.60073 + 001 
+ 5.68013 + 002 
+7.75133+003 
+ 1.1506E+005 
+ 1.82493 + 006 
+ 3.05483 + 007 
+ 5.33783 + 008 
+ 9.65193 + 009 
+ 1.79303 +011 
f3.40233 +012 
$6.56343 +013 
+ 1.28243 +015 
+ 2.53023 + 016 
+5.02943 +017 
+ 1.00533 + 019 
+ 2.01773 +020 
+ 4.06183 + 02 1 
+8.19433+022 
+ 1.65563 + 024 

-931368+220135i 

2; 

(32, 32) 

+ 1.00003 + 000 
+ 4.17 143 - 001 
+2.50093-001 
+ 1.8212E-001 
+ 1.44193-001 
+ 1.20033-001 
+ 1.03243 - 001 
+ 9.11033 - 002 
+ 8.13543 - 002 
+ 7.63633 - 002 
+ 6.42993 - 002 
+ 1.40573-001 
+5.06013-003 
+ 5.8 1753 + 000 
+2.14883 + 001 
+ 9.67173 + 002 
+ 1.19793 + 004 
+ 3.53443 + 005 
+ 7.86393 +006 
+ 2.40483 + 008 
+ 7.35163 + 009 
+2.59193+011 
+ 9.71503 +012 
+3.97323+014 
+ 1.73343+016 
+ 8.06983 + 017 
+ 3.97343 +019 
+ 2.06073 +021 
+ 1.11963+023 
+ 6.34493 + 024 
+ 3.73523 + 026 

- 1.8037 +2.3036i 

TABLE 2.  The coefficients b, in the modified seri3s Nu = ciz, b, RaZ". The numbers ( M ,  N )  indicate 
the level of truncation (3.4). 

and subsequently reverting the series to obtain z = z(u). In the above, P, are 
Legendre polynomials and z ,  = p exp (ix). 

The resulting coefficients b, of the modified series (3.14) are tabulated in table 2. 
The values of z, which were used in the transformation are recorded at the bottom 
of the table. We observe that for the series corresponding to R < 2+, all the 
coefficients are positive. This fact indicates that in these cases R Q 2;, we were 
successful in diminishing the effects of the complex singularities in the series (3.6). 
For R = 2, the results are not nearly as spectacular. The first 26 coefficients in the 
series are positive, but the sign pattern becomes erratic thereafter. We repeated the 
procedure for R = 2, using a variety of choices for z ,  in (3.13). We also tried to map 
away simultaneously a number of singularities, but to no avail. Despite our efforts, 
we did not succeed in obtaining a consistent sign pattern for R = 2. From the data 
provided in table 2, however, we hypothesize that the function Nu(Ra2) for R = 2 
may possess an additional real singularity Ra, > Ra, = 47. We shall provide more 
support for this conjecture later in the paper. 
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FIQURE 5. Domb-Sykes plots for the modified series (3.14). (a )  R = 2, ( b )  d, ( c )  Zf and ( d )  24 

Next, we depict in figure 5 the Domb-Sykes plots based on the coefficients of the 
modified series (equation (3.14), table 2). For R = 2, the Domb-Sykes plot (figure 5 a )  
behaves erratically and does not provide any useful information. For R < 2:, the 
Domb-Sykes curves of the modified series are better behaved than those of the 
original series (figure 3). For R = 2; and 2$, the predictions of the radius of 
convergence Ra, are consistent with those reported in 93.2. For R = 2:, linear 
extrapolation suggests Ra, - 364 while the quadratic extrapolation yields erratic 
behaviour ; thus we shall rely on the estimates obtained with the Pad6 method. 

Before we conclude this section of the paper, we note in passing that while the 
generalized Euler transformation is useful in mapping away undesired singularities, 
i t  introduces a t  the same time new singularities into the modified series. These new 
singularities may be detected by analysing the singularities of the transformation 
(3.13). One needs to make sure that the new singularities are sufficiently far away 
from those which are under investigation. 

3.5.  A few concluding remarks about the series analysis 
In  this section we analyse an extended perturbation expansion in order to estimate 
the radius of convergence Ra, and the nature of the nearest singularities of the series. 
The effective Rayleigh numbers Ra,*(R-1) which correspond to the radius of 
convergence and the distance to the nearest real singularity RaT(r- 1) are depicted 
as a function of the radii ratio R by solid and dashed lines, respectively, in figure 6. 
We note in passing that as R-  1 + O ,  RaT(R- 1) + 4n2, which is the critical Rayleigh 
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Multiple solutions 1 

R -  1 

FIGURE 6. The radius of convergence (solid line) and the distance to the nearest real singularity 
(dashed line) are shown as a function of the radii ratio R. The shaded region corresponds to a region 
in which the DOE equations possess a unique solution. 

number for the onset of convection (the first bifurcation) in a horizontal porous 
layer heated from below (Lapwood 1948). This, of course, is not coincidental. As 
(R- 1 )  + O ,  the geometry at the top of the gap resembles that of an infinite layer. We 
shall see in $4 that  in the case of the low radii ratios, this is the place where a 
secondary cell will evolve. 

For Ra < Ra,, the function Nu(Ra2) is analytic (Lang 1985), and therefore unique. 
Thus, it is likely that for Ra < Ra,, the DOB equations possess a unique, two- 
dimensional, steady solution. For Ra > Ra,, there may be multiple solutions. For 
radius ratio R = 2 ,  the nearest singularity is complex ; thus, the multiple solutions 
are not physically realizable. We shall see later that the series for R = 2 possesses an 
additional real singularity Ra, - 62 (denoted as * in figure 6), beyond which point 
physically realizable multiple solutions do exist. For radii ratios R < 2;, the nearest 
singularity is real, and we shall show that multiple solutions do, in fact, exist for 
Ra > Ra,. The loss of uniqueness may occur as a result of either bifurcation or the 
appearance of isolated solution branches. In the next section, we investigate the 
nature of the muliple solutions for Ra > Ra,. 

4. Solution of the nonlinear problem 
4.1. The procedure 

In  this section, we describe the solution of the nonlinear equations (2.2) using the 
Galerkin technique. The dependent variables and T are expanded into the 
truncated Fourier series : 
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By substituting (4.1) into (2.2) and requiring that (2.2) is satisfied in the sense of 
weighted residuals, we convert the non-linear p.d.c.'s (2.2) into a set of o.d.e.'s which 
can be presented compactly as 

- d o  = S-'F(u(Ra), Ra).  
dt (4.2) 

For notational as well as computational convenience, wc map the two-dimensional 
matrix of unknowns B,, , onto the column vector o( 1 x $(N+ 2 )  (N + 1 ) ) .  In  order to 
minimize the number of unknowns, we retain the explicit relationship between Ai j  
and B,, as suggested by the linear momentum equation ( 2 . 2 ~ ) .  The vector I; 
represents the right-hand side of (2.2 b)  while the square matrix S results from the 
non-constant coefficient of the time derivative in (2.2b). We shall refer to S as the 
'shape' matrix. The explicit forms of F and S along with the explicit relationship 
between A ,  and B,, are given in Appendix E. 

We note in passing that for a fixed total number of spectral terms, the 
aforementioned truncation (4.1) led to a faster convergence than could be achieved 
by retaining N terms both in the x- and y-directions. This higher rate of convergence 
is attributable to the fact that  the chosen truncation (4.1) allows one to incorporate 
higher-order harmonics than otherwise would be possible. 

Steady-state solutions of (4.2) are found by solving the $(N + 1)  (N + 2) nonlinear 
algebraic equations F(w(Ra),  Ra) = 0, 

Our main objective is to compute the solution branch o(Ra) ,  which coincides for 
Ra = 0 with the no-motion solution o,. The procedure is briefly described below. Let 
us assume that we know a solution point, say (&, R%). If the Frechet derivative of F 
with respect to o at the solution point, denoted here as pw = Fw(&,&), is non- 
singular, the Implicit Function Theorem (Fulks 1961) guarantees a locally unique 
solution ( o ( R a ) ,  R a ) .  Thus starting from the known solution (6, R%), Newton's 

(4.3) 

(4.4) 

Practicality considerations require us to  use a finite increment €la-&. As a result, 
it is unlikely that the vector o computed in (4.4) would satisfy (4.2) to  a desired 
accuracy. Thus, we follow iteration (4.4) with a sequence of corrector steps in which 
Ra is fixed : 

Sequence (4.5) is repeated until the desired accuracy is achieved. To this end, we use 
the convergence criteria : 

= at- F;'(o,, Ru) F(o, Ru). 

IlFll G E ,  l l ~ i + l - ~ i l l / l l ~ i l l  G 6 .  

(4.5) 

The procedure described above can be used as long as the Jacobian F, in non- 
singular. Values of the Rayleigh number Ra = Ra, a t  which the determinant of the 
Jacobian (IFJ) vanishes are identified as possible bifurcat,ion points or points at 
which the solution is no longer locally unique. I n  figure 7 ,  we depict the Jacobian's 
determinant (IF,[) as a function of the Rayleigh number Ra for radii ratios 1z = 2; 
(figure 7 a )  and R = 2; (figure 7 b ) .  

4.2. The behaviour of the Jacobian as a function of the Rayleigh number 

I n  figure 7 ( a ) ,  we depict IF,I as a function of the Rayleigh number Ra for R = 2;. 
Similar qualitative behaviour (not shown here) was observed for R = 2. 
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FIGURE 7.  The Jacobian's determinant (IFJ) dypicted as a; function of the Rayleigh number Ra. 
( a )  R = 23, and ( b )  Zz. 

The solution branch which corresponds to the no-motion solution is denoted I in 
figure 7 ( a ) .  For Ra = 0, IF,I = 1. As the Rayleigh number increases, the magnitude 
of the Jacobian increases, although not monotonically. At Ra N 120, IF,I dips and 
then picks up again. Before the dip, the flow structure consists of bicellular flow 
which we refer to as 2-C structure (figure l la) .  Beyond the dip, the flow becomes 
multicellular (figure l l b  and c). The transition from one flow regime to another is 
smooth and does not involve a bifurcation. Note that the Jacobian in branch I does 
not become singular in the range of Rayleigh numbers considered here. 

We also detected a second solution branch, which we call I1 in figure 7 ( a ) .  This 
solution branch is an isolated one, which exists only for Ra > Ra, - 112. Branch I1 
has a turning point at Ra = Ra,. The lower half of the branch 11- is unstable and thus 
is depicted with a dashed line, while the upper half 11, is stable. In  this paper, we 
adopt the convention that linearly stable solutions are shown with solid lines while 
unstable solutions are shown with dashed lines. We shall discuss the linear stability 
analysis later in this section. The lower half 11- corresponds to a 2-C flow structure 
(figure 11 d )  while the upper half 11, corresponds to a multicellular structure (figure 
11 e and f). Both branches I and 11, eventually lose stability via a Hopf bifurcation 
at Ra - 200 and Ra N 490, respectively. We note in passing that we traced solution 
branch I1 through the turning point by considering the Rayleigh number in (4.3) to 
be an unknown and regarding one of the unknowns in o as a controlling parameter. 

I n  figure 7 ( b )  we depict IF,! as a function of Ra for R = 2a. Similar qualitative 
behaviour (not shown here) was exhibited in the case of R = 2;. 

The solution branch which corresponds to the no-motion solution (IF,I = 1 at 
Ra = 0) is denoted as I. As the Rayleigh number increases, the determinant lF,l 
initially increases in magnitude ; but eventually this trend changes. The determinant 
starts to decline, crosses the zero axis at Ra = Ra, - 245 (for truncation level N = 
19) and then assumes negative values. At the bifurcation point, the solution branch 
loses stability (a fact which is denoted by a dashed line in figure 7 b ) .  

At the first bifurcation point, Ra = Ra,, a second solution branch, which we 
denote as 11, intersects with the primary branch I. The second branch also possesses 
a turning point at Ra,. The upper half of the branch 11, corresponds to a stable 
multicellular Structure (figure 13c-f) while the lower half of the branch .II- 
corresponds to a 2-C (figure 13b) unstable structure. Newton's method allows us to 
cross the bifurcation point (IF,I = 0) without difficulty as long as points too close are 
not used. The point Ra = Ra, can be obtained using the method of bisection, for 

10 FLM 187 
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example. Plots like figure 7 are useful for obtaining some insights into the behaviour 
of the Jacobian as a function of the Rayleigh number. However, in general one can 
compute the singular point Ra, directly by adding an additional equation to set (4.3) 
and treating Ra as an unknown. This gives us 

F(u, Ra)  = 0 ,  

Det (&(a, R a ) )  = 0. 

Additionally, we were able to cross the bifurcation point by employing the cord 
technique (Decker & Keller 1980). 

We briefly summarize our results up to this point. Clearly, there exists some 
critical Rayleigh number Ra, beyond which the DOB equations possess multiple 
solutions. For R = 2 and 29, the additional solutions appear as isolated branches 
while for R = 2f and 23, these solutions appear through a bifurcation process. Of 
course, there is no guarantee that we have found all possible solutions for Ra > Ra,. 

4.3. Linear stabsility 

The linear stability of any solution branch can be readily obtained by computing the 
eignevalues of the matrix (S'E) .  Eigenvalues with negative or positive real parts 
indicate, respectively, linearly stable and unstable solutions. Of particular interest is 
the eigenvalue with the largest real part. We denote the magnitude of the real part 
of this eigenvalue by Max (hr). 

For illustration purposes, we depict in figure 8 Max ( A r )  as a function of the 
Rayleigh number for R = 23. It turns out that for Ra < 610, this eigenvalue is real. 
First, we shall focus our attention on solution branch I (figure 7 b ) .  For Ra < Ra,, 
Max (hr) < 0, which indicates that the 2-C structure is linearly stable. At the 
bifurcation point (Ra = Ra,), Max (hr) = 0, and for Ra > Ra,, Max (hr) > 0. This is 
consistent with the Jacobian's determinant changing sign at  Ra = Ra, (figure 7 b ) .  
The 2-C structure (branch I) loses stability at the bifurcation point. In figure 8, we 
denote stable and unstable solutions by solid and dashed lines, respectively. 

At the bifurcation point, two additional families of solutions are generated, 11, 
and 11- (see also figure 7 b ) .  The Max (hr) corresponding to 11, is negative which 

indicates linear stability. Max (hr) > 0 for the 11- solution which indicates that this 
solution is unstable. 

In sum, thus far we have observed that, for Ra < Ra,, the solution of the flow field 
is of the 2-C type. At Ra = Ra,, this solution I loses stability and another steady- 
state solution 11+ of the multicellular type gains stability. This indicates that Ra, is 
a bifurcation point. In fact, by the Leray-Schauder theory, we were guaranteed that 
Ra = Ra, would be such a bifurcation point since Max (hr)  is an eigenvalue of odd 
multiplicity (a simple eigenvalue in our case). 

We note in passing that for the branch II,, for some Ra > Ra,, the eigenvalue with 
the largest real part becomes complex. In fact, the branch 11, undergoes Hopf 
bifurcation at  Ra - 610. 

Similar types of calculations also were carried out  for the other radii ratios, 
providing us with the necessary information with respect to  the stability of the 
various solution families. 

4.4. The effects of truncation 
A matter of great concern to us was the effect of the truncation level ( N  in (4.1)) on 
both the qualitative and quantitative nature of our results. To this end, we repeated 
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FIGURE 9. The effect of the truncation level N on the qualitative behaviour ?f the Jacobian's 
determinant as a function of the Rayleigh number for R = 2a. 

our calculations for various values of N. As an illustration, we depict in figure 9 for 
R = 2i, the behaviour of the Jacobian as a function of the Rayleigh number for 
various truncation levels, N. It turns out that for N < 11, no bifurcations occur at 
all in the range considered. The Jacobian's determinant keeps increasing indefinitely. 
For N 2 11,  we obtain a bifurcation at  Ra = Ra,. The magnitude of Ra,, however, 
depends on N .  As N increases, Ra, decreases. Using the Galerkin technique, we 
predicted the critical Rayleigh numbers at  which multiple solutions appear. They are 
denoted Ra,,(N). The corresponding values obtained by extrapolating the results to 
N -+ co are denoted by Ra,,. We denote with E the relative difference between RacG 
(N) and Ra,,. That is, 

(4.7) 
Ra,,") -Rat* 

Ra, W 

E =  

10.2 
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FIGURE 10. The effect of the truncation level N on ,the v+ue RacG byyond which multiple 

solutions exist. (a) R = 2 ,  (b)  2 3 ,  (c) 2a and (d )  2s. 

E is depicted as a function of N in figure 10 for R = 2, 2;, 2: and 2;. We observe that 
for a sufficiently large N ,  E behaves as a function of N in the following manner : 

E =  - , (3' 
where a and y are constants which depend on the radii ratio R. Clearly, as N -+ 00, 

E + O .  We note in passing that the computational time for computing Ra, increases 
very fast with N ,  and it may not be practical to repeat the same calculations for a 
large number of cases. Instead, one may use (4.8) to extrapolate the results of the 
computations to N +  co. For R = 2, 2:, 2; and 28, we estimate Ra,, = 62, 112, 224 
and 470, which are in good agreement with the corresponding values obtained in 
§ 3. 

5. Results and discussion 
5.1. Comparison of the series analysis ($3) and the numerical solution ($4) - a region 

of uniqueness 
I n  5 3 we obtained a power series solution in terms of the Rayleigh number Ra for the 
temperature and flow fields and for the Nusselt number Nu.  

In  what follows, we focus on the series solution for the Nusselt number N u  = 
c N ,  Ra2s. This series has a finite radius of convergence since the function Nu(Ra2)  
has singularities in the complex Ra2 plane. 
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On occasion, such as in the case of radii ratio R = 2, the nearest singularity lies off 
the real axis and thus has no physical significance. This singularity unnecessarily 
limits the range of utility of the series. One can use a variety of analytic continuation 
techniques (see, for example, Bau 1984) to extend the range of utility of the series 
beyond the non-real singularity. We mapped away the non-real singularity in an 
attempt to discover whether any additional real singularities existed. Although the 
modified series (3.14) could not predict a real singularity, it did indicate to us that 
such a singularity may exist. The analysis of $4 reveals that, indeed, there is 
a singularity at Ra - 62. For Ra > 62, multiple solutions exist. For radii ratios 
R d 2$, the series analysis of $3 reveals that the nearest singularities lie on the positive 
real axis of the Ra2 plane. For each of the series considered, the singularity is 
physically meaningful and it indicates the existence of a branch point beyond which 
the solution is not unique any more. This is confirmed in $4, where we solved the full 
nonlinear DOB equations. It turns out that for R = 2f, the loss of uniqueness occurs 
as a result of the appearance of an isolated solution branch (figure 7 a ) ,  while for 
R = 28 and 24, the loss of uniqueness occurs as a result of a bifurcation process. 

These results are summarized in figure 6, where the shaded area denotes the region 
of uniqueness for the two-dimensional, steady DOB equations in the parameter space 

5.2. The $ow and temperature Jields 
In  this section, we describe the structure of the flow and temperature fields which 
corresponds to the solution branches identified in $4. 

The flow and temperature fields for R = 21 and 2f are depicted, respectively, in 
figures 11 and 13 as functions of the Rayleigh number. The left-hand side of figures 
11 and 13 depicts equally spaced isotherms while the right-hand side depicts the 
streamlines. In order to be able to show the weaker secondary convection, we had to 
dispense with showing the streamline in equally spaced fashion. Figures 12 and 14 
depict the extreme values of the stream function as a function of the Rayleigh 
number. 

In  what follows, we shall first discuss radii ratios R = 2 and 2; and then, R = 23 and 

The structure of the flow field for R = 2; is depicted in figure 11 as a function of 
the Rayleigh number. Similar qualitative behaviour was observed for R = 2. Owing 
to space limitations, we do not depict the case of R = 2 here. The information is 
available in Himasekhar (1987). 

We start our discussion by tracing the aolution branch I which for Ra = 0 coincides 
with the conduction solution (see also figure 7a). For 0 < Ra < 120, this solution 
branch I consists of two counter-rotating cells, one cell in each half of the annulus 
(figure 11 a). That is, fluid is rising next to  the hot inner cylinder and descending next 
to the outer, cold cylinder. The temperature field inside the annulus does not deviate 
significantly from the conductive (no-motion) temperature field. This is reflected by 
the isotherms being almost parallel to each other. As the Rayleigh number increases 
so does the intensity of the circulation. This fact is indicated by the increase in the 
extreme value of the stream function (@ext) which appears as a monotonically 
increasing function of the Rayleigh number in figure 12. For Ra > 120, the flow 
structure becomes multicellular with the number of cells increasing from four (figure 
11 b )  to six (figure 11 c) as the Rayleigh number increases. The transition from a two- 
cell structure (2-C) into a multicellular structure occurs without bifurcation. The 
transition point coincides with the local minimum in the Jacobian’s determinant 
(figure 7a);  however, it  is possible that this has no special significance. The extreme 

(Ra, R).  

24, 
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FIQURE 11. Flow and temperature fields for R = 2;. The left-hand side and right-hand side of the 
figure depict the isotherm and the streamlines, respectively. (a)  Branch I, Ra = 100, stable. 
(b) Branch I ,  Ra = 125, stable. (c) Branch I ,  Ra = 195, stable. ( d )  Branch 11-, Ra = 400, unstable. 
(e) Branch II,, Ra = 300, stable. (f) Branch II,, Ru = 500, unstable (oscillatory). 

values of the stream functions associated with the secondary circulation are depicted 
in figure 12. Capital letters A, B, etc. are assigned to the various cells to allow cross 
reference between figures 11 and 12. As is evident from figure 12, the circulation 
associated with the secondary cells (B and B and C in figure 11 b and c, respectively) 
is much weaker than the one associated with the primary cell A. Also, the convective 
cells are counter-rotating, i.e. the motions associated with cells A and B in figure 11 b 
are, respectively, clockwise and counter-clockwise. As the Rayleigh number is 
further increased, solution branch I loses stability at R a  - 200 via a Hopf bifurcation. 
That is, at Ru - 200, the real parts of two complex-conjugate eigenvalues of the 
matrix (S-lF,) become positive. 

Solution branch I is unique only for Ra < 112. For Ra > 112, we observe the 
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25 3 
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Ra 
FIGURE 12. The extreme values pf the stream function ($.,,,) are depicted as a function of the 

Rayleigh number for R = D. The capital letters allow cross-reference with figure 11. 

appearance of an isolated branch which we denoted as I1 in figure 7(a) .  The upper 
half of the branch 11, (figure 7a)  is stable and the flow structure consists of four 
convective cells, two in each half of the annulus (figure 11 e ) .  As the Rayleigh number 
increases beyond about 490, solution branch XI, loses stability via a Hopf bifurcation. 
The unstable solution is depicted in figure 11 ( f )  for R a  = 500. The wiggly behaviour 
of the isotherms in figure 11 ( f )  may indicate that an insufficient number of spectral 
terms was used in the computations. Thus, our conclusion about the location of the 
Hopf bifurcation should be considered a tentative one. We did not pursue this point 
any further owing to the expense associated with the incorporation of a larger 
number of spectral terms and the fact that our prime interest in this paper is the 
study of the flow structure around Ra N Ra,. 

The lower half of branch 11, denoted as 11-, (figure 7 a )  is unstable from the very 
start (that is, the matrix S-lFT, posesses a real, positive eigenvalue). This solution 
branch represents a bicellular flow structure (figure l l d )  which is very similar in 
appearance to branch I (for R a  < 120). 

We conclude this subsection by noting that for R = 2; and Ra > Ra,  = 112, the 
DOB equations possess at  least two stable steady solutions : namely branches I and 
11,. A similar situation was observed for R = 2, Ra > 62. 

Next, we describe the Aow and temperature fields of the various solution branches 
associated with R = 2;. Qualitatively similar behaviour was observed for R = 21. 
Owing to space limitations, we do not discuss the R = 28 case here in any detail. The 
interested reader is referred to Himasekhar (1987) for further details. 

We start the discussion by tracing solution branch I, which coincides with the 
conductive solution for Ra = 0 (see also figure 7 b ) .  For 0 < Ra < Ra,, solution 
branch I consists of two counter-rotating cells (figure 13a). As R a  exceeds Ra, = 224, 
this solution branch loses stability (one of the real eigenvalues of the matrix S-'F, 
becomes positive). A new steady-state solution appears (figure 7 b). We denote this 
new solution branch as XI. Solution branch I1 has a turning point a t  Ra = Ra,. The 
upper half of the branch is stable and consists initially of four convective cells (figure 
13c). As the Rayleigh number increases so does the number of cells (figure 13d-f). 
Note that this further increase in the number of cells occurs without bifurcation (see 
also figure 7 b ) .  At about Ra N 610, branch 11, loses stability via a Hopf bifurcation. 
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FIGURE 13. Flow and temperature fields for R = 2;. The left-hand side and right-hand side of the 
figure depict the isotherms and the streamlines, respectively. (a)  Branch I, Ru = 200, stable. 
(b )  Branch 11-, Ru = 270, unstable. ( e )  Branch II,, Ra = 270, Stable. ( d )  Branch IT,, Ha = 295, 
stable. ( e )  Branch II,, Ra = 315, stable. ( f )  Branch II,, Ra = 500, stable. 
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FIGURE 14. The extreme values yf the streamfunction ($ext) are depicted 
Rayleigh number for R = D. The capital letters allow cross-reference 

as a function of the 
with figure 13. 
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FIGURE 15. The Nusselt number Nu depictec! as a funqttion of the Rayleigh number Ra for (a )  
R = 2% and ( b )  2z. 

The lower half of solution branch 11- is unstable from the very outset (the matrix 
S-lF, has a positive real eigenvalue). The flow structure associated with 11- is similar 
to the one associated with branch I (figure 13b). 

The extreme values of the stream function as a function of the Rayleigh number 
are depicted in figure 14. To allow cross-referencing between figures 13 and 14, we 
denoted the extreme values of the stream function associated with the various cells 
by capital letters. Here again, the circulation associated with the secondary cells (B 
in figure 13) is much weaker than the one associated with the primary cell A. 

5.3.  The heat transfer 

A matter of some practical interest is the magnitude of the heat transfer associated 
with the various solution branches. In  figure 15(a, b ) ,  we deyict the Nusselt number 
as a function of the Rayleigh number for R = 2: and 2r. Qualitatively similar 
behaviour was observed but not shown here for R = 2 and 2i. Stable and unstable 
solutions are shown, respectively, by solid and dashed lines. 

For radii ratios R < 2 r  (figure 15b), the stable solution branches 11, beyond the 
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bifurcation point have higher rates of heat transport than do the unstable solutions. 
The same, however, is not true for the isolated solutions which appear for R 2 2; 
(figure 15a). In  that case, branch I has the highest rate of heat transfer beyond its 
range of stability. 

For a fixed Rayleigh number, the flow structures which consist of a larger number 
of convective cells mandate a higher rate of heat transfer. This may be attributed to 
the fact that an increase in the number of convective cells leads to a decrease in the 
circumferential length in which each packet of fluid is in contact with the hot 
boundary. 

5.4. Energy of the system 

Next, we compare the energy content of the various solution branches. We compute 
the energy contents in order to determine whether stable solutions have lower energy 
contents than do unstable ones. In other words, we are asking whether the selection 
of stable and unstable branches can be determined according to a ‘minimal energy 
principle ’. Since the contribution of the kinetic energy is negligible, we do not include 
it in our calculations. The total energy of the system per unit axial length may be 
approximated by 

E H  = //(Tc r dr  d8 + l / ( T  -Tc) r dr d8, (5.1) 

where the thermal energy E ,  is normalized with pCp($-po)  tf. The value EH = 0 is 
assigned to a system maintained a t  the temperature of the outer boundary (q), The 
first term on the right-hand side represents the energy associated with a purely 
conductive state ( E H , , )  while the second term represents the correction due to 
motion ( A E H ) .  T, in (5.1) is the conductive temperature distribution. Hence, we can 
write 

We depict AEH as a function of the Rayleigh number for the various solution 
branches for R = 2i and 2i which appear in figures 16 (a  and b ) ,  respectively. The cases 
of R = 2 and 2$ are not shown here, but the qualitative behaviour is similar to that 
depicted in figures 16(a and b) ,  respectively. From figures 16(a and b ) ,  it is evident 
that a t  and beyond the bifurcation and turning points, the stable solution branches 
possess lower energy content than do the unstable ones. 

5.5. Entropy generation 

Another quantity of physical interest is the rate of entropy generation associated 
with each of the solution branches. Thus, a calculation is carried out to investigate 
whether a principle of ‘maximum entropy generation’ exists. That is, we want to 
know whether stable solutions have a higher rate of entropy generation than do 
unstable ones. We calculate the non-dimensional entropy generation per unit axial 
length of the annulus (Bejan 1984, p. 355) as: 

(5.3) 

where the integration is carried out over the cross-section’s area. In the above, the 
entropy is scaled with the equivalent thermal conductivity of the medium keq. 
D = /?gri/Cp is the dissipation number. 

Since (5.2) includes the absolute temperature, it was necessary to specify fluid and 
medium properties in order to facilitate numerical computation of 8,. For illustration 
purposes, we assume that the working fluid is water with an average temperature of 
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FIGURE 16. Energy content of various solution branches depic;ted as a function of the Rayleigh 
number of (a )  R = 2; and (6) 21. 
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FIGURE 17. Entropy generation rate associated with various solution branches for (a )  R = 2:, 

and (6) 21. 

20 "C, ?i-?o = 10 "C, the medium's permeability is K = 10-sm2, and the radius 
ri = 0.15 m. The corresponding dissipation number D = 7.3 x 

The entropy generation rate of the various solutions as a function of the Rayleigh 
number is depicted in figures 17(a and b) for R = 2; and 2+, respectively. The cases 
of R = 2 and R = 2%, though not shown here, are qualitatively represented by figures 
17 ( a  and b) ,  respectively. We observe that beyond bifurcation and turning points the 
stable solution branches possess higher rates of entropy generation than do the 
unstable ones. 

5.6. Stability 
Finally, our results allow us to depict a 'stability' curve. In figure 18, we show the 
various two-dimensional flow structures in the (Ra ,  R)-plane. We focus only on those 
solutions which for Ra = 0 coincide with the conduction solution. The area beneath 
the lower curve corresponds to steady, bicellular convection. Once the magnitude of 
the Rayleigh number exceeds the lower curve, the flow structure becomes 
multicellular. For R < 2i, the transition occurs via bifurcation while for R > 2f, it  
occurs smoothly without bifurcation. As R + 1, Ra(R- 1)  + 4x2, which is the 
Rayleigh-number value of the first bifurcation in the infinite, horizontal porous layer 
(Lapwood 1948). As the Rayleigh number is further increased, the multicellular 
structure loses stability via a Hopf bifurcation and the flow becomes oscillatory. For 
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FIGURE 18. A schematic stability curve for type I solutions in a two dimensional setting. 

R - t l ,  we depict in figure 18, the value of the Rayleigh number (390.7) which 
corresponds to a Hopf bifurcation in a horizontal, infinite porous layer (Aidun & 
Steen 1987). Clearly, the latter is consistent with the trends observed in our own 
computations. The isolated solution branches observed for R 2 2; are not depicted in 
figure 18. 

The results stated thus far certainly apply to a narrow annulus ( A  -4 1). Such a 
situation may exist, for example, in a Hele-Shaw cell. Next, we shall comment on the 
applicability of our results in situations in which the aspect ratio, A ,  is not small. In  
such situations, both three- and two-dimensional bifurcations are possible. Indeed, 
Caltagirone (1976) has studied a similar problem to the one presented in this paper. 
While he has not observed any two-dimensional bifurcations such as those reported 
here, he has observed that the bicellular solution undergoes a Hopf bifurcation into 
a three-dimensional, time-dependent solution. It appears, therefore, that the 
bicellular flow structure may undergo one of two types of bifurcations, i.e. into either 
a multicellular two-dimensional structure or a three-dimensional, time-dependent 
structure. 

To determine which of these bifurcations will occur in practice, we plot with a 
dashed line Caltagirone’s (1976) stability curve for aspect ratios A = 00 and A = 0.5 
(see figure 19). The solid line corresponds to our own results pertaining to two- 
dimensional bifurcations of the ‘conductive’ (type I) solutions. The curve for 
A = 0.5 is not given explicitly by Caltagirone. He only computed the effect of axial 
confinement A for R = 2. The curve for A = 0.5 was constructed assuming that a 
similar relative effect applies to other radii ratios as well. The area above the dashed 
line indicates three-dimensional, unsteady flow. For an infinitely long horizontal 
annulus in which R 3 2$, the bicellular solution will bifurcate into a three- 
dimensional unsteady solution and the two-dimensional, multicellular solution will 
never be observed in practice. When R < 2f, the values predicted by Caltagirone 
(1976) for three-dimensional bifurcation are very close to our own. Unfortunately, 
the precision of both of these calculations does not allow us to predict with certainty 
which type of bifurcation will occur. It is quite plausible that for R < 2f and A = 00, 
the two-dimensional, multicellular mode will be the preferred one. This view is 
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FIGURE 19. A schematic stability curve for type I solutions in a three-dimensional setting. The 
dashed lines correspond to three-dimensional bifurcations (Caltagirone 1976) while the solid line 
corresponds to two-dimensional bifurcations (present paper). 

R -  1 

supported by experimental observations conducted in horizontal annuli containing 
Newtonian fluids (see, for example, Liu, Mueller & Landis 1961). 

Things are somewhat clearer for the case of aspect ratio A = 0.5. Obviously, in that 
case, when R < 1.34, the bifurcation from two-dimensional bicellular to multicellular 
flow will occur. As the Rayleigh number increases, the multicellular structure 
eventually undergoes a secondary bifurcation into oscillatory two- or three- 
dimensional flow. 

6. Conclusion 
We carried out a systematic study of two-dimensional, multiple solutions of 

the DOB equations. For low Rayleigh numbers (Ra < Ra,), the DOB equations 
possess a unique solution. For Ra > Ra , multiple solutions exist. 

For relatively large radii ratios R > 21, the additional solutions appear as isolated 
branches. Two solutions remain stable for some range of Rayleigh numbers Ra > 
Ra, until eventually they lose stability via Hopf bifurcations. Which solution will be 
observed in an experiment depends on the initial conditions. 

For relatively small radii ratios R < 2:, the additional solutions appear via a 
simple bifurcation process.One solution branch loses stability while another one 
gains it. For Ra > Ra,, we find only one stable solution and that loses stability via 
a Hopf bifurcation as the Rayleigh number is increased. 

We observe that a t  and beyond bifurcation and turning points, the stable branch 
possesses a higher heat transfer rate, a lower energy content and a higher entropy 
generation rate than do the unstable branches. 

F 

The material presented here is based upon work supported by the National Science 
Foundation under Grant No. CBT84-51658. 
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Appendix A 

expression (3.4) into (3.2) are listed. 
In  this Appendix the recurrence relations resulting from the substitution of 

From the momentum equations ( 3 . 2 b ) ,  we get 

Energy equation (3 .2a)  gives 
s-I 01 - 

P ,  1 - p27c2012 + 1 2  
k = l  

M-?,  N - l  M N - l  

Appendix B 
In this Appendix, we investigate the effects of both finite machine precision and 

truncation of the Fourier expansion (3.4) on the accuracy of the coefficients N s  in 
table 1. 

Most of the computations were carried out on the Univac 1100 with 18-digits 
precision. In order to test possible adverse effects of round-off errors, we repeated one 
of the computations (R = 2;) on the Cray-1 with 27-digits precision. The first 15 
digits of the coefficients N s  were reproduced exactly. Thus, we concluded that finite 
machine precision did not adversely affect our results. 

Next, the level of truncation ( M , N )  in the spectral presentation (3.4) was 
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( M ,  N )  
8 28 x 28 32 x 32 33 x 33 

10 -4.0544 (-74) -4.0550 (-74) -4.0554 (-74) 
20 2.7102 ( -  135) 2.7102 ( -  135) 2.7102 ( -  135) 
30 2.0305 ( -  190) 1.3560 ( -  190) 1.3560 ( -  190) 

TABLE 3 

Ratio 

s (c;)-z 

25 117 
26 117 
27 118 
28 118 
29 118 
30 118 

Consecutive terms (Cl) Alternate terms (C2) 

Linear Quadratic Linear Quadratic 
extrapolation extrapolation extrapolation extrapolation 

(c:)r2 W2 (4r2 ( C Y  

119 101 120 121 
121 164 120 121 
119 100 1 20 121 
122 172 121 122 
120 99 121 122 
122 185 121 122 

TABLE 4. Neville table for R = 2: 

examined. This was done by comparing results obtained for the coefficients N ,  in 
(3.6) for various choices of ( M , N ) .  Table 3 provides a representative example. The 
values obtained for a few coefficients N ,  are listed for radii ratio R = 2;. It appears 
that the results used in this paper are accurate within 4 significant digits. 

Appendix C 
In  this Appendix, the construction of Neville tables is briefly described. 
The Neville table to the sequence {c:}, where c: = N,/N,- ,  is a triangular 

arrangement of the elements c:, where s labels the rows and k = 0 ,1 ,2 ,  ..., s, the 
columns. The elements of the kth column are generated from the (k-1)th by 

sC,k-'- (S - k) 
, k > l .  

k 
c t  = 

If the sequence (c:) is considered as a function of (l/s), the element cf is the 
intercept on the l/s = 0 axis of the kth-degree curve through ( k +  1 )  successive points 

Unfortunately, the Neville table may tend to magnify any small irregularities in 
the initial sequence; thus, in some cases (Bowers & Woolf 1969), the following 
equation, in place of (C 1)  may yield better results: 

0 c:., c:-l, . . .) C,-k.  

Ra,  values predicted by the Neville tables (table 4) utilizing the consecutive terms 
(C 1 )  and alternate terms (C 2) are listed in table 4. The Neville table constructed for 
the consecutive terms (C 1)  exhibits somewhat oscillatory behaviour while the one 
constructed for the alternate terms (C 2) predicts more consistent results. 
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FIGURE 20. Domb-Sykes plot of the series (D2) with 94 terms. 

1.8 

1.6 

-i 1.4 
2- 
\ 

2- 1.2 

I .o 

0.8 
0 0.025 0.050 

1/s 

FIGURE 21. Domb-Sykes plot of the series (D2) with 200 terms. 

Appendix D 
In this Appendix, we demonstrate that the Domb-Sykes analysis of the truncated 

Taylor series may lead to an erroneous estimate of the power of the nearest 
singularity even though the location of the nearest singularity is estimated fairly 
accurately. 

To this end, we consider a simple model function 

F(2)  = ( l -z)~(Z2-2.102+1.21)-~ (D 1) 

which we expand into the power series 
S 

F ( z )  = N , P .  
s=o 

The nearest singularity is located at  z = 1 ,  and v = - 0.5 (3.9). The Domb-Sykes plot 
consisting of the first 94 terms is depicted in figure 20. The plot appears to exhibit 
a linear relationship in the ratio N s / N E - l .  Extrapolation of the data leads to an 
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estimate of the nearest singularity correct to within 2 YO. The tangent to the curve 
becomes almost horizontal suggesting that the nearest singularity might be a simple 
pole ( v  = 1)  which, of course, is wrong. 

In  this particular case, we have the luxury of being able to compute as many terms 
in the expansion as we wish. In figure 21, we show the Domb-Sykes plot which 
corresponds to 200 terms in the series. This curve predicts correctly both the location 
of the nearest singularity and its exponent. 

Thus, we demonstrate that in situations in which the function F ( z )  possesses many 
singularities, the rate of convergence of the Domb-Sykes plot is adversely affected. 
Should the number of terms available in the corresponding truncated Taylor series, 
be insufficient, erroneous predictions of the exponent of the nearest singularity may 
result. 

Appendix E 

nonlinear p.d.e.’s (2.2) via projection are listed. 
In  this Appendix, the nonlinear, algebraic equations which are obtained from the 

From the momentum equation (2.2a), we have 

- ( - 1 ) P  e l  

(p2x2a2 + 12)  

M - l  

+ C &naC(i,  P )  [-Bi, (1-1) + Bt, (1+1)I 
i=l  

M-l  

+ c to(i, P )  “1- 1 )  Bi, (2-1) + (1+ 1)  Bi, (t+1)1} (E 1)  
i=l 

where 
1 for I = 1, 

% = {  0 for 1 > 1 .  

Here the functions C ( i , p )  and D ( i , p )  are the same as those defined by (A 2) and 

Energy equation ( 2 . 2 ~ )  is used to define the residue Fp,l  as 
(A 3) given in Appendix A. 

where Q;,l  is identical with Q s , k , p , l  as given by (A 5 )  in Appendix A except that the 
subscripts ( 5 - k )  and k are to be dropped in the terms B+k),i,j and A k , i , j ,  
respectively. 

The shape matrix introduced in (4.2) is given by 

a - 
S m , p , l  - 2(p2n2a2+12) 
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